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Abstract 

Hemodynamic monitoring is extremely important in the accurate 

measurement of vital parameters. Current methods are highly invasive or non-

continuous, and require direct access to the patient’s skin. This study intends to 

explore the modulated magnetic signature of blood method (MMSB) to attain 

blood flow information. This method uses an applied magnetic field to magnetize 

the iron in the red blood cells and measures the disturbance to the field with a 

magnetic sensor [1]. Exploration will be done by experimentally studying in-vitro, 

as well as simulating in COMSOL the alteration of magnetic fields induced by the 

flow of a magnetic solution. It was found that the variation in magnetic field is due 

to a high magnetization of blood during slow flow and low magnetization during 

rapid flow. The understanding of this phenomenon can be used in order to create 

a portable, non-invasive, continuous, and accurate sensor to monitor the 

cardiovascular system.  
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Chapter 1 - Introduction 

1.1 Problem Statement 

Circulating blood provides the nourishment (nutrients, oxygen and soluble 

factors) needed for supporting life. Hemodynamic monitoring involves keeping 

track of oxygen perfusion in tissues in order to prevent ischemia and subsequent 

hypoxia (cell death due to lack of oxygen) [2]. Hemodynamic stability is the 

proper functioning of the cardiovascular system, being reflected by a blood 

pressure of 120 mmHG during the systolic phase and 80 mmHG in the diastolic 

phase [3]. Additionally, the beat to beat variability for a healthy adult is 

considered to be from 60 to 100 beats/min [4]. Thus, hemodynamic monitoring 

involves the accurate measurement of vital parameters of the cardiovascular 

system and is common practice in the medical field [5, 6]. It is particularly 

important in intensive care units, where continuous hemodynamic monitoring 

provides useful information which can help medical personnel predict and 

mitigate “early stage” hemodynamic instability, rather than dealing with its after 

effects [7]. Measurements commonly used for this purpose include heart rate, 

blood pressure, and oxygen saturation. Of these, making beat to beat blood 

pressure or volume measurements in a non-invasive and accurate fashion are 

the most challenging.  
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Current methods are highly invasive or non-continuous, and often times 

require direct access to the patients’ skin. Traditional hemodynamic monitoring is 

based on the ability to measure venous and arterial pressure [8]. Changes in 

blood pressure often mean late indications of hypoxia due to vasolidation or 

vasoconstriction. Thus, pressure can be a misleading late-stage measurement 

regarding the hemodynamic condition of a patient [9]. Since the cardiovascular 

system is a closed system, every change in a hemodynamic factor triggers 

counterbalancing changes in other factors [10]. The current, most popular device 

for monitoring the hemodynamic system is the Swan-Ganz catheter which uses 

the thermodilution principle to acquire hemodynamic information [11]. This 

method is mainly used when patients are exhibiting pronounced hemodynamic 

instability. There are other invasive and non-invasive methods which cannot be 

utilized for prolonged periods of time, as they are physically inconvenient for the 

patient, especially those monitored during strenuous activities.  

This study explores a newly reported blood flow monitoring method that 

uses an applied magnetic field coupled with a magnetic sensor [1]. COMSOL 

Multiphysics modeling and corresponding in-vitro studies are performed to 

investigate the alteration of magnetic fields induced by the flow of a magnetic 

fluid. The main focus of the project involves understanding the relationship 

between the various parameters that affect the magnetization of magnetic 

particles within the fluid and thereby the induced magnetic field which can be 

measured. These parameters include velocity profile of the solution, magnitude 

of applied magnetic field, and magnetic solution concentration. A detailed 
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understanding of this phenomenon portends the design of a portable sensor to 

be placed over a patient’s artery, which can non-invasively, continuously, and 

accurately monitor critical blood flow properties. Such a sensor can be used in 

emergency response vehicles, the ICU, in the field, and at home to aid with early 

detection of hemodynamic instability.  

1.2 Goal of Thesis 

The primary goal of this study is: 

• To understand the relationship between the induced magnetic field 

created through magnetization of blood analog biomagnetic solution as 

well as field parameters. 

1.3 Hypothesis 

• Variations will exist in the magnetization of the magnetic solution with 

particle concentration and applied static magnetic field. 

• Variations in the magnetic field will be observed during pulsatile flow of 

the magnetic solution. 
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Chapter 2 – Background 

2.1 Methods to Measure Blood Flow 

Current methods of blood flow monitoring are non-continuous, expensive 

and inconvenient, require direct contact of the skin, or are invasive [12-14]. The 

most commonly used device in coronary disease units is catheterization of the 

pulmonary artery with the Swan-Ganz catheter; which provides continuous 

monitoring, but is invasive and causes complications associated with catheter 

insertion [15]. Other invasive methods to measure blood flow include digital 

subtraction angiography [16], the use of electromagnetic flow probes [17], or 

Doppler catheters [18]. Non-invasive methods currently used consist of pulse 

oximetry [19-22], Doppler flowmetry [23-26], impedance cardiography [27], 

Doppler echocardiography [28], computarized tomography [29], magnetic 

resonance imaging, or magnetic sensors such as super quantum interference 

devices (SQUID) [30] or Hall effect sensors [31]. The following sections will 

describe the various methods of measuring blood flow, along with the 

advantages and disadvantages associated with them.  

2.1.1 Thermodilution 

Thermodilution is the most common method to track coronary blood flow, 

highly used since the 1970’s. It involves introducing a Swan-Ganz catheter in the 

right coronary sinus [32, 33].  New advances incorporated into the catheter have 
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increased its applications. Fiber optics has allowed for the monitoring of oxygen 

saturation levels spectrometrically. In addition, a fast responding thermocouple 

and a thermal resistor have been incorporated into the catheter. The 

thermocouple indicates the right ventricle ejection fraction and the thermistor, 

reveals the cardiac output.  Despite its many advantages, several limitations are 

associated with the use of thermodilution [17]. The limitations include the lack of 

continuous measurements, inability to assess rapid changes in blood flow, and 

the failure to estimate perfusion to the right atria or ventricle and to specific 

transmural layers. Additionally, the very nature of catheter insertion carries with it 

some dangers such as arrhythmia, sepsis, infection, allergic reactions as well as 

increased mortality and morbidity [15, 34, 35]. 

2.1.2 Digital Subtraction Angiography 

This method requires the injection of fluorescent contrast media. In digital 

subtraction angiography, pre-contrast images are subtracted from the contrasted 

images, which aid in visualizing the blood vessels. High spatial resolution is 

acquired with this technique; however, the contrast media transit time is slow 

which hinders detection of rapid blood flow changes [16].  Absolute blood flow 

cannot be determined with this method as it depends on assessment of perfusion 

before and after coronary dilation.  Several variables that affect the accuracy of 

this method include the quantity and method of the contrast injection, effects of 

the contrast agent on the blood flow, the protocol for digital angiography 

subtraction, and the algorithm used to calculate the changes in perfusion [36-38]. 
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2.1.3 Electromagnetic Flow Probes 

Electromagnetic flow probes are used to continuously monitor vein bypass 

graft blood flow with a millisecond time constant. The electromagnet flow probe is 

typically implanted before use, and contact between the vessel wall and the 

probe is stabilized using fibrous adhesions.  However, when the probe is placed 

intra-operatively, major calibration complications. Also, contact with the vessel 

can change significantly with pressure alteration and result in erroneous 

readings. Even if the probe could be calibrated when used intra-operatively, the 

perfusion field is not usually defined thus, limiting the accuracy of the 

measurement of blood flow in a graft [39]. Additionally, measurement of coronary 

blood flow using the electromagnet flow probe is inherently unsafe since vessel 

dissection is required to insert the encircling probe [17].  

2.1.4 Doppler Catheter 

The Doppler catheter employs a small piezoelectric crystal incorporated 

inside the tip of a small probe that is inserted into a catheter. The crystal emits 

and receives a signal that reflects off the blood allowing for the detection of blood 

velocity. Unlike the electromagnetic flow probe, it is not necessary to encircle the 

vessel with the Doppler catheter, and thus perform unsafe vessel dissection [18]. 

This method makes several assumptions such as a fixed vessel cross-sectional 

area, a uniform vessel velocity profile, and a stable angle between the crystal 

and the bloodstream. This method can only measure changes in velocity instead 

of absolute velocity, which presents a great disadvantage [40, 41]. As mentioned 
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in the thermodilution method, there are again complications associated with the 

insertion of a catheter.   

2.1.5 Pulse Oximetry 

A pulse oximeter measures the saturation of peripheral oxygen in the 

blood, also providing a heart rate reading. The principle behind this method 

involves the reflection of incident light off red blood cells measured by a photon 

sensor. Since this is an optical measurement, the device is limited to use on 

fingers, toes, and ear lobes, where interfering tissue absorbance and scattering 

is minimal. Furthermore, low signal-to-noise ratio and artifact motion may 

constitute significant sources of error and have been noted [20]. Other 

confounding factors affecting the accuracy of the pulse oximetry method involve 

transducer movement, non-pulsatile vascular bed, peripheral vasoconstriction, 

hypothermia, hypotension, anemia, changes in vascular resistance, and 

obstructions such as nail polish and tattoos [19]. Studies have also suggested 

that finger-probe oximeters may be more accurate than ear-probe, limiting the 

versatility of pulse oximetry [22]. 

2.1.6 Laser Doppler Flowmetry 

Another optical method of assessing the microvascular blood perfusion is 

Laser Doppler flowmetry. This is done by emitting a single frequency light source 

through tissue and processing the frequencies of the scattered light to obtain 

blood perfusion. A frequency shift occurs when the light hits the red blood cells in 

the blood and bounces back [24, 26]. The disadvantages of this method include 
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long computational time, processing bandwidth, instrument calibration, non-

portability, artifact noise, high cost, and the effect of probe pressure on the skin. 

Studies have also recognized interferences when trying to detect vital signs due 

to thermal noise, flicker noise, and residual phase [23, 25].  

2.1.7 Doppler Echocardiography 

In traditional echocardiography, an ultrasound (high frequency) wave is 

emitted into the body, and reflected back by the tissues. The probe measures the 

change in the returned signal, and it can acquire flow characteristics such as 

velocity, direction and turbulence. 

 

Figure 1 Reflected signal differences for blood flowing away and towards 
the Doppler echocardiography probe [42]. 

 

As seen in Figure 1, if the flow is directed away from the emitted signal, 

the change in the signal has a lower frequency; when the flow is directed towards 

the emitted signal, the reflected signal will have a higher frequency than that 

emitted by the probe. This method is highly dependent on the angle the beam is 

directed with respect to the blood flow. As shown by the Doppler shift equation,  
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(1), 

where Fd refers to the Doppler shift, fo to the transmitted ultrasound frequency, c 

to the speed of sound, V to the velocity of the blood flow and θ to the angle 

between the emitted signal and the blood flow; highest accuracy for velocity 

estimates is achieved when the beam is parallel to the blood vessel. When the 

angle between the flow and the ultrasound beam is greater than 25º, the velocity 

estimates are generally too far from the true value and are clinically unacceptable 

[28]. Since a Doppler echocardiography probe shares ultrasound and Doppler 

components, computing time becomes competitive. In order to overcome time 

complications, it is common to switch off the imaging mode while the Doppler 

mode is on. If it is chosen to run both the imaging and the Doppler at the same 

time, both image quality and Doppler information is compromised. There are two 

different types of Doppler systems used in Doppler echocardiography, 

continuous and pulsed wave Doppler. In continuous, there are two separate 

piezoelectric crystals, one which continuously emits an ultrasound signal and the 

second one which receives the signal. While continuous information is acquired, 

a disadvantage associated with this Doppler type is the lack of depth 

discrimination or selectivity. In pulsed Doppler, there is a single crystal that 

alternates the “transmission and reception” of the ultrasound wave.  An 

advantage of this type is the ability to acquire flow information in a selected 

volume. A disadvantage associated with pulsed Doppler is the inability to 

measure blood velocities over 1.5 to 2 m/sec [42].  
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2.1.8 Superconducting Quantum Interference Device (SQUID) 

A previous method using a super sensitive magnetic sensor or SQUID has 

been used to monitor the heart signal. This method was developed in 1963 by 

Baule McFee. The principle behind this method involves the determination of the 

magnetic field around the chest area while the magnetic vector of the heart is 

recorded. This method is more commonly known as a magneto cardiogram 

(MCG) [30]. The magnetic sensors were so sensitive that they often acquired 

signal noise from outside sources. Interference problems, combined with the cost 

of the magnetic sensor however, have kept this technology from mainstream 

medicine.  

2.1.9 Hall Effect Sensors 

Hall Effect sensors are another way of measuring blood pulse. This 

method involves the application of a magnetic field on the body in order to create 

the blood polarization. A difference in the magnetic signal is recorded from 

electrodes which are placed on the skin around the applied magnetic field.  

Unfortunately, this method is very susceptible to noise and interference and 

depends on good electrical contact of the electrodes onto the skin [31]. 

2.1.10 Impedance Cardiography 

In impedance cardiography a constant, high frequency, low-amplitude 

alternating current is applied to the chest by placing four electrodes, two on the 

neck and two on the thorax. The corresponding voltage is measured, which 
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allows for the determination of change in chest impedance. The stroke volume 

can be calculated with the measured impedance values by using 

 

(2), 

where, SV represents the stroke volume, δ is the actual weight of the patient 

divided by the ideal weight, H is the patient’s height, (dZ/dT)max is the maximum 

value of the first derivative of the impedance waveform, Zo is the reference 

impedance and LVET refers to the left ventricular ejection time [27]. A limitation 

associated with the impedance cardiograph is that it tends to consistently 

overestimate the stroke volume, by up to ten percent of the true value [43]. 

2.1.11 Tomography 

Tomography is an imaging method that involves creating an image from 

its projections. A cross-sectional image is created by illuminating the patient’s 

body from various directions and collecting the reflectance data [29]. There are 

two main methods used for medical imaging to detect blood flow information, 

ultrafast computed tomography and positron-emission tomography.  

2.1.11.1 Ultrafast Computed Tomography 

Ultrafast computed tomography has been used for the evaluation of 

coronary graft bypass [44], the assessment of ventricular function [45, 46], 

identification of intracardiac mass and the measurement of myocardial mass [47]. 

In order to measure blood flow, it is necessary to intravenously inject a contrast 

agent (die). The agent is illuminated by exposing the patient to a small dose of 
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radiation (X-ray), and thus flow information is acquired. Specifically, blood flow is 

measured by “analysis of contrast medium time-density curves from the 

myocardium” [48]. An assumption that is used to simplify the blood flow 

calculation is that no venous outflow occurs when the maximum initial slope of 

the time-density curve occurs.  As a result, if venous outflow does arise, then the 

computation of blood flow is greatly underestimated. In contrast, overestimation 

of blood flow occurs when the blood vessel that is being imaged is much smaller 

than the spatial resolution of the computed tomography scanner. This is due to 

volume averaging, which leads to undercutting the of the peak height of the 

arterial time-density curve [48].   

2.1.11.2 Positron-Emission Tomography 

Positron-emission tomography is mainly used to acquire functional and 

metabolic information of different organs in the body [49]. In this method, a small 

dose of a radio-active isotope is intravenously injected in the body, which is 

chosen to be absorbed by a specific tissue. In order to gather blood flow 

information, 18F-labeled Fluorodeoxyglucose (FDG) and 18O-labeled water are 

used. The targeted area is scanned by a positron-emission tomograph, and the 

amount of tracer material absorbed by the cells is measured. Blood flow, as well 

as glucose content in the blood is correlated to the FDG uptake by the body [50]. 

When looking at a positron-emission tomography image, the variation in tracer 

material uptake is seen as a variation in color. This method permits accurate 

representation of blood flow, even when measuring fast blood velocities. Obvious 
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disadvantages are patient exposure to radio-active materials (in the case of 

FDG), cost, and required personnel training in a clinical setting [51].  

2.1.12 Magnetic Resonance Imaging 

Soft tissue can be imaged with the use of magnetic resonance imaging 

(MRI), by exposing the body to a strong magnetic field and a radio frequency 

signal. The hydrogen atoms in the body align due to the magnetic field. 

Excitement with the radio frequency perturbs the alignment, and the protons in 

the body respond by sending a signal as they lose energy which is picked up by 

a transmitter. The response signal emitted by the hydrogen protons is unique to 

various tissues, which creates the contrast image in an MRI [52]. To calculate 

blood flow, a specific radio frequency is used which excites the hydrogen protons 

in the blood. In MRI, there is a correlation between blood velocity and T1 

relaxation [53]. This parameter refers to the time it takes for the hydrogen protons 

to demagnetize (random atom alignment). With the use of the T1 relaxation time 

and the signal intensity, it is possible to determine blood flow characteristics [54]. 

While using MRI is an accurate method for acquiring blood flow, it is very 

expensive and requires the use of very specialized equipment.  

2.1.13 Modulated Magnetic Signature of Blood (MMSB) 

This novel method was published in the International Conference of 

Biomedical Engineering (ICBME) in 2009 by Phua et al [1]. It entails placing a 

small permanent magnet and a magnetic sensor on top of a major artery; and 

capturing the blood pulse by measuring the disturbance created in the magnetic 
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field by the pulsatile motion of blood. The results gathered using this method can 

be seen in Figure 2, where a clear signal representing the diastolic and systolic 

phases of the heart can be seen. This is the first method that has been 

presented, which could be used in order to create a sensor that is portable and 

can provide non-invasive and continuous tracking of the cardiovascular system. 

The principle behind this method is not well understood, and should be further 

investigated to acquire a better understanding of the magnetic contribution of 

pulsed blood when flowing underneath an applied field.   

 

Figure 2 Pulse rate results captured on an oscilloscope using the MMSB 
method [1]. 

 

Table 1 serves as a comparison between the commonly used methods to 

capture blood flow and pulse and MMSB. Most methods are non-continuous and 

non-portable, requiring expensive equipment and the use of trained personnel. 
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Table 1 Comparison of current blood flow technologies. 

Method Continuous Portable Non-invasive 

Thermodilution ���� 

  Subtraction Angiography ���� 

 

���� 

Electromagnetic Flow 

Probe 

   
Doppler Catheter ���� 

  
Doppler Echocardiography ���� 

 

���� 

Laser Doppler Flowmetry ���� 

 

���� 

Impedance Cardiography 

  

���� 

Tomography 

  

���� 

Pulse Oximetry 

  

���� 

MRI 

  

���� 

MMSB ���� ���� ���� 

 

2.2 Magnetism 

Magnetism is the response of a material to a magnetic field [55]. In this 

phenomenon, a magnetic material will exert an attractive or repulsive force on 
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other magnetic materials [56]. The change of magnetic energy in a given volume 

is what creates a magnetic field. A magnetic moment is produced by the spinning 

and orbital motion of an electron. 

 

Figure 3 Electron orbital and spinning motion [57]. 

 

The orbital motion is related to the movement of the electron around its 

nucleus. The electron spinning motion is the rotation of the electron around its 

own axis. Both of these movements contribute to the magnetic behavior seen in 

magnetic materials. Higher magnetization is seen with a greater magnetic 

moment alignment of the atoms [57]. As seen in Figure 3, the magnetic moment 

is always around the atom’s rotational axis. 

2.2.1 Magnetization 

Magnetization is the amount of magnetic moment per volume possessed 

by a material [58]. The magnetic moment is the tendency of a particle to align 

with a magnetic field. The relationship between magnetic moment and 

magnetization is shown by 
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(3), 

where M is the total magnetization in Amperes/meter (A/m), N is the number of 

magnetic moments in  the sample and V is the volume of the sample in m3. 

 Magnetic field is a title used interchangeably for the fields produced by the 

magnetic flux density B and the material’s magnetic field H. The difference 

between these two fields, is that the B field is generated by the free electrons, 

and the H field is generated by bound electrons in a material.  

Magnetization relates to a materials magnetic field H, through a constant 

called magnetic susceptibility χ, which is material specific (Eq. 4). Since χ is unit 

less, the units for H are A/m as well.  

  
(4) 

Furthermore, the magnetic flux density B can be inferred by knowing a 

material’s magnetization and magnetic field H. This relationship is shown by 

 
(5), 

where B is the magnetic flux density measured in Gauss and µ0 is the 

permeability of free space with a value of 1.25663e-6 in SI units [59]. 

These equations describe the basic magnetic behavior of various 

materials, and provide the basis for understanding the physics behind the 

simulations.  
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2.2.2 Magnetic Materials 

Magnetic atoms are those that carry a permanent magnetic moment.  

Materials are made by an assembly of atoms, which can either be non-magnetic 

or magnetic. A material will have different magnetic behavior as well as total 

magnetization, depending on the type of atoms. The main types of magnetic 

materials are diamagnetic materials, paramagnetic materials, ferromagnetic 

materials, ferrimagnetic materials, and superparamagnetic materials [60]. A brief 

description of each will be presented below (Figure 4).  

 

Figure 4 Graphical illustration of ferromagnetic, ferrimagnetic, 
paramagnetic and diamagnetic materials [61]. 

 

2.2.2.1 Diamagnetic Material 

Diamagnetic materials are only composed of non-magnetic atoms. When 

the material is exposed to a magnetic field, the magnetization of these materials 
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is very weak and is opposite to that of the applied magnetic field. This effect is 

due to the change of the electronic orbital motion due to the magnetic field. The 

magnetic susceptibility of these materials is usually negative and on the order of 

10-5.  

2.2.2.2 Paramagnetic Material 

Paramagnetic materials are composed of magnetic atoms that are 

randomly aligned. When the material is exposed to an external magnetic field, 

the direction of the moments is momentarily aligned. A magnetization that is 

parallel to the direction of the applied field is created, which adds to total field. 

The magnetic susceptibility of these materials is usually positive and on the order 

of 10-3 to 10-5. 

2.2.2.3 Ferromagnetic Material 

Ferromagnetic materials have magnetic atoms that produce large 

magnetic moments. When a virgin ferromagnetic material is exposed to an 

applied magnetic field, the atoms permanently align. This creates a permanent 

magnetization, which is parallel to the applied magnetic field.  

2.2.2.4 Ferrimagnetic Material 

Ferrimagnetic materials are comprised of atoms that have unequal 

adjacent magnetic moments aligned in opposite directions. When exposed to an 

applied magnetic field, a permanent magnetization is seen similar to that of 

ferromagnetic materials, if the material’s temperature is under the Curie 

temperature. Below the Curie temperature, the magnetization exhibited in the 
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ferrimagnetic material is permanent. Above the Curie temperature, thermal 

agitation can overcome the magnetization forces and randomize the magnetic 

moments.  Ferrimagnetic materials are more temperature dependent and they 

can achieve much higher magnetization values.   

2.2.2.5 Superparamagnetic Material 

Superparamagentic materials behave similar to paramagnetic materials. 

Instead of the individual atoms aligning to an applied magnetic field, the magnetic 

moment of the entire crystalline solution is aligned to the field. When there is no 

applied magnetic field, the thermal fluctuations are enough to maintain the net 

magnetization of superparamagnetic materials equal to zero.  

2.2.3 Magnetic Fluid 

A magnetic fluid is a solution that contains magnetic particles suspended 

in a carrier fluid. In order to ensure an even dispersion of the particles in the 

carrier fluid and, avoid agglomeration or particle settling, a surfactant or coatings 

are used. A coating has to be matched to the carrier fluid, and overcome the Van 

der Waals forces and magnetic forces in order to prevent particle agglomeration 

[57]. The most common magnetic fluids are ferrofluids and paramagnetic 

solutions. Blood is also considered a magnetic fluid, which has paramagnetic 

properties. The following sections contain brief descriptions of ferrofluids, 

paramagnetic solutions and blood.  
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2.2.3.1 Ferrofluid 

In a ferrofluid, the particles size can vary from 10 nm – 50 nm in diameter, 

and are usually made out of magnetite or ferrite. Ferrofluids contain from 1% to 

5% of magnetic particles per volume, 10% surfactant, and the remainder is 

carrier fluid. In the absence of a magnetic field, the magnetic moments of the 

particles are randomly aligned, such as in a paramagnetic material, and the net 

magnetization of the solution is zero. A ferrofluid contains superparamagnetic 

particles [62]. When a ferrofluid is exposed to an applied magnetic field, the 

magnetic particles are instantly magnetized, meaning their magnetic moments 

instantly align with the field lines. The magnetic forces that hold a ferrofluid in 

place are proportional to the magnetic particle magnetization and the applied 

magnetic field. If the ferrofluid is exposed to a weak magnetic field, thermal 

energy from agitation of the solution overcomes the magnetic forces that hold the 

ferrofluid in place, and the particles randomly disperse.   

2.2.3.2 Paramagnetic Solution 

 In a paramagnetic solution, the particle diameter usually varies from 1 µm 

to 30 µm. Paramagnetic solutions contain magnetic beads that possess a ferrite 

core of nanometer size, with a shell made out of polystyrene, which increases the 

particle size to the micrometer range. These particles are usually commercially 

for drug targeting such as in magnetic separation of polypeptides. The 

polystyrene shell is usually covered with an antibody or protein, to promote 

binding to various polypeptides. The paramagnetic solutions typically contain 

from 2.5% to 5% particles by volume, and the remainder of the solution is the 
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mixture of a surfactant with deionized water. As with ferrofluids, when the 

solution is exposed to a magnetic field, the magnetic moments of the ferrite cores 

instantly align with the field lines. The strength of the magnetization of 

paramagnetic particles is less than that of a ferrofluid, but it is also proportional to 

the applied magnetic field.  

2.2.3.3 Blood 

Blood is mainly composed of plasma, which carries proteins, platelets, red 

and white blood cells. Red blood cells contain a protein called hemoglobin which 

has a high affinity for iron. The average diameter of a red blood cell is between 

4.0 µm to 4.5 µm. The average hemoglobin iron concentration is 17 % wt by 

volume for males and approximately 15% wt by volume for females [63]. The 

density of blood has been published to be 1050 kg/m3 and the dynamic viscosity 

0.0035 Pa.s [64]. Blood has been recorded to have different magnetic 

susceptibility values depending on its oxygenation state. Deoxygenated blood, 

such as that which travels in veins towards the heart, behaves as a paramagnetic 

solution and has a magnetic susceptibility of 3.5x10-6. Oxygenated blood, which 

is found in arteries and is pumped from the heart, has diamagnetic properties, 

with a magnetic susceptibility of -6.67x10-7 [65-67]. The magnetic relaxation of 

blood has been experimentally measured to be in the order of a few seconds, 

meaning that it will take at least a second for blood to reach its equilibrium 

magnetization when exposed to a magnetic field [67, 68].    
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Chapter 3 – Experimental Model 

The main purpose of this study is to verify and understand the method of 

continuous blood flow monitoring using an applied magnetic field coupled with a 

magnetic sensor. This method was first developed by Phua et al [1], and places 

an applied magnetic field in the path of an artery. The in vitro experimentation 

developed to study the MMSB method is described in the following section. 

Further sections in this chapter include the limitations of the experimental set-up 

and the results acquired using a ferrofluid and a paramagnetic solution.  

3.1 Setup 

The experimental set-up used for the in-vitro model is shown in Figure 5. 

A Harvard Apparatus PHD 2000 programmable syringe pump was used to flow 

the magnetic particles through a glass capillary tube 2.5 mm in diameter. Since 

the MMSB method has reported to magnetize the blood in the radial artery, a 

capillary tube diameter was chosen to appropriately mimic this condition. A 

permanent magnet configuration was suspended around the capillary tube, to 

apply a magnetic field on the fluid. Magnetic flux readings were made with the 

transverse probe of a 5080 F.W. Bell gauss / teslameter. The flow of the 

magnetic particles went from the syringe pump, through the glass capillary, and 

finally to a specimen collection container.  

 



www.manaraa.com

 

24 

 

Figure 5 In-vitro test experimental set-up.  (1) is a PHD 2000 Harvard 
Apparatus programmable syringe pump, (2) is a 5080 F.W. Bell gauss / 
teslameter, (3) is the gaussmeter transverse probe, (4) is the specimen 

collection container, (5) is the permanent magnet configuration and (6) is 
the glass capillary. 

 

3.1.1 Gaussmeter 

The gaussmeter used to gather the magnetic flux readings is the 5080 

F.W. Bell meter. The transverse probe of the gaussmeter has a Hall effect sensor 

placed 0.9mm from the edge (Figure 6), and positioned so that it will measure 

magnetic flux lines perpendicular to the flat side of the probe. A Hall Effect 

sensor consists of a Hall generator that has a constant current flowing through it. 

When the Hall generator is exposed to a magnetic field, the magnetic flux lines 

bend the current to one edge, creating a voltage differential. Generally, there is a 

linear relationship between the generated voltage and the magnetic flux field [69]. 

The gaussmeter has a measurement range from 0.01 mT to 2.999 T. The 

resolution of the readings varies depending on the measurement range that is 

being used. A range of 0 G to 300 G has a resolution of 0.1 G, a measurement 

range of 300 G to 3 kG has a resolution of 1 G and a measurement range of 3 
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kG to 30 kG has a resolution of 10G. The accuracy of the gaussmeter is ±1 % of 

the reading when in dc mode. 

 

Figure 6 5080 F.W. Bell gaussmeter sensor location graphic. 

 

3.1.2 Permanent Magnets 

Two permanent magnets were used as magnetic field sources. These 

magnets are made out of Neodymium (NdFeB) rare earth metal. Both magnets 

have a grade of 52, which corresponds to a remnant magnetic flux (Br) of 13.2 T. 

They are both disk magnets, the first with dimensions of 0.5 inches in diameter 

and 0.0625 inches in thickness. The second magnet is 0.5 inches in diameter 

and 0.125 inches in thickness.  

3.1.3 Magnetic Fluids 

Two different fluids were used to determine the feasibility of detecting the 

magnetization of each solution. The first magnetic particles used were the PM-

40-10 from Spherotech. The beads contain ferrite cores encapsulated by a 

polystyrene shell. The beads have a saturation magnetization of 0.46 T, meaning 

they will reach the maximum magnetization when exposed to this field. The 

second magnetic fluid used will be ferrofluid EFH1 from Ferrotec. This fluid 

contains magnetite particles with a nominal diameter of 10 nm. The particle 
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The ferrofluid’s magnetic susceptibility is 

blood. Hence, it is assumed that the 

stronger, which decreases the sensitiv

measuring device.  The ferrofluid has

3.1.4 Shielding 

An aluminum mesh was implemented as a shielding method. The box 

created with the aluminum mesh was grounded, and all the experi

equipment was placed inside 

remove radio frequency wave interference in the exp

Figure 

 

3.2 Experimental Trials

Various flow rates were used to flow the magnetic fluid 

capillary tube. The dual

capillary, to serve as the 
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by volume and they are suspended in a light mineral oil. 

magnetic susceptibility is 1.58, which is much higher than that of 

blood. Hence, it is assumed that the ferrofluid’s magnetization effect is much 

stronger, which decreases the sensitivity requirements of the magnetic field 

The ferrofluid has a saturation magnetization of 440 Gauss. 

An aluminum mesh was implemented as a shielding method. The box 

created with the aluminum mesh was grounded, and all the experi

equipment was placed inside of it (Figure 7). This shielding method was used to 

remove radio frequency wave interference in the experimental trials 

Figure 7 Implemented aluminum shielding. 

Experimental Trials 

Various flow rates were used to flow the magnetic fluid through the 

tube. The dual permanent magnet configuration was placed around the 

, to serve as the applied magnetic field. The magnetic sensor 

volume and they are suspended in a light mineral oil. 

which is much higher than that of 

effect is much 

ity requirements of the magnetic field 

a saturation magnetization of 440 Gauss.  

An aluminum mesh was implemented as a shielding method. The box 

created with the aluminum mesh was grounded, and all the experimental 

shielding method was used to 

erimental trials [70]. 

 

through the 

placed around the 

magnetic field. The magnetic sensor was placed 
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at various distances away from the permanent magnet, also on top of the 

capillary tube. Figure 5

3.2.1 Permanent Magnet Characterization

The magnetic field 

dual magnet configuration (

center of the two magnets, and the field was m

The magnet configuration was moved away from the probe 

Equation 6 describes the magnetic field at the center between both magnets 

along the vertical centerline, as a function of separation distance.

B is the magnetic 

magnetic flux in G. x1 = (d/2 

from the center point, along the vertical centerline of both magnets and 

separation distance between the 

permanent magnet in cm and 

Figure 8 Experimental set

Horizontal 
centerline

27 

at various distances away from the permanent magnet, also on top of the 

5 shows the experimental set-up.  

Permanent Magnet Characterization 

magnetic field was measured along the horizontal centerline 

configuration (Figure 8). The transverse probe was plac

center of the two magnets, and the field was measured starting from t

The magnet configuration was moved away from the probe at intervals of 5 mm. 

the magnetic field at the center between both magnets 

along the vertical centerline, as a function of separation distance. 

is the magnetic field in G, Br is the permanent magnet’s remnant 

= (d/2 – x) and x2 = (d/2 + x) where x is the point of interest 

along the vertical centerline of both magnets and 

between the magnets (Figure 8). R is the radius of the disk 

permanent magnet in cm and T is the thickness of the permanent magnet in cm.

 

Experimental set-up for dual permanent magnet characterization

x = 0 

Travel direction 
up to x = 2 cm 

Horizontal 
centerline 

Vertical 
centerline 

Separation distance 

at various distances away from the permanent magnet, also on top of the 

al centerline of the 

placed at the 

starting from the center. 

at intervals of 5 mm. 

the magnetic field at the center between both magnets 

 

 
(6) 

gnet’s remnant 

point of interest 

along the vertical centerline of both magnets and d is the 

is the radius of the disk 

is the thickness of the permanent magnet in cm.  

l permanent magnet characterization. 
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3.2.2 Constant Flow 

The input flow rate from the syringe pump is constant during these 

experimental trials. The flow rates were varied starting at 20 ml/min, every 10 

ml/min until reaching 90 ml/min. These flow rates represent the upper and lower 

limits the syringe pump is capable of producing. They correspond to fluid 

velocities of 0.06 m/s to 0.3 m/s. The magnetic field produced by the permanent 

magnet configuration was also varied, by changing the geometry and strength of 

the magnets used. The various magnets used were described in section 3.1.2.  

3.2.3 Pulsatile Flow 

To emulate the pulsed flow the heart produces, the Harvard Apparatus 

syringe pump was programmed to create intervals where the magnetic fluid is 

flowing at maximum velocity, followed by no flow for 10 seconds. The fluid profile 

is not sinusoidal, but a square wave. The maximum velocity and the permanent 

magnet strength were also varied as described during the constant flow trials in 

section 3.2.2.  

3.3 Limitations 

• The magnetic fluid used does not reflect the same behavior as blood, 

since oxygenated blood behaves as a diamagnetic material and both the 

ferrofluid and the Spherotech solution behave as paramagnetic solutions. 

No commercially available diamagnetic solutions were found that would 

have a greater magnetic susceptibility than blood. 
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• Magnetic solution magnetization signal is limited by the sensitivity of the 

gaussmeter, very small signals are not detected and overpowered by the 

ambient noise.  

• The simulation of pulsatile flow is limited by the syringe pump, and is 

replicated as a square wave instead of a sine wave.  

3.4 Results 

In this section the results from the experimental trials are discussed. First 

the permanent magnet characterization will be addressed, followed by the 

outcomes seen during the velocity trials using a paramagnetic solution and a 

ferrofluid.  

3.4.1 Permanent Magnet Characterization 

Characterizations were done to the permanent magnet configuration using 

the 0.5 inch in diameter by 0.0625 inch in thickness magnets (Figure 9). 

 

Figure 9 Dual magnet characterization results, graph of magnetic flux 
density vs. distance. 
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Equation 6 was used to compare the accuracy of the magnetic flux density 

at the center of both magnets. Equation 6 yields a value of 513.4 G and the 

measured value was 497.2G. There is little error between the experimental and 

calculated values, indicating proper measurement of the magnetic field by the 

gaussmeter.  

3.5 Velocity Trials 

3.5.1 Paramagnetic Solution 

As described in the experimental methods, flow of the paramagnetic 

solution went through the capillary tube. Various input flow rates were tried, using 

the 0.5 inches by 0.125 inches dual magnet configuration as the applied field. As 

shown in Table 2, no magnetization was recorded. The gaussmeter measured 

ambient noise in various attempts to acquire a signal.  

Table 2 Magnetic flux density of the paramagnetic solution. 

Separation (cm) 
Flow Rate (ml/min) 

30 40 50 

1.5 0.1 G 0.1 G 0.2 G 

1 0.1 G 0.1 G 0.1 G 

0.5 0.2 G 0.1 G 0.1 G 

0 0.1 G 0.2 G 0.1 G 
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3.5.2 Ferrofluid 

The input flow rate for the ferrofluid started from 20 mil/min to 90 mil/min 

with 10 mil/min intervals. Three magnet configurations were used, two dual 

magnets using both permanent magnets described in section 3.1.2 and a single 

magnet with thickness of .0625 and diameter of .5 inches. There was no 

correlation between increasing velocity and measured magnetic field (Table 3).  

Table 3 Ferrofluid magnetization values for varying fluid velocities and 
varying separation values between the permanent magnet and the 

magnetic sensor. 

Separation (cm) 
Flow Rate (ml/min) 

30 40 50 

1.5 3.6 G 3.6 G 3.6 G 

1 - 8.7 G - 8.7 G - 8.7 G 

0.5 18 G 18 G 18 G 

 

The results for the variation in magnetization with distance for the different 

applied magnetic fields are summarized in Table 4. These magnitudes were 

gathered with a ferrofluid particle concentration of 7.9 % by volume. Increase in 

the applied magnetic field lead to a greater contribution of the field from the 

ferrofluid; confirming the superparamagnetic behavior of the magnetite particles. 

There is an inverse correlation between the measured magnetic field and the 

separation distance from the permanent magnets. Greater separations lead to a 

low field, whereas small separations lead to a larger field. Furthermore, tests 

were also run with decreased particle concentration values of 4% and 2% 
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particles by volume (Figure 10). Halving the particle concentration yields half the 

magnetic field contribution by the ferrofluid (Table 5 and Table 6). 

Table 4 Ferrofluid magnetization for particle concentration of 7.9% by vol. 

Separation 

(cm) 

0.5’x0.125’ Dual 

Magnets 

0.5’x0.0625’ Dual 

Magnets 

0.5’x0.0625’ Single 

Magnet 

B Field 

(no fluid) 

B Field 

of fluid 

B Field 

(no fluid) 

B Field 

of fluid 

B Field 

(no fluid) 

B Field 

of fluid 

1.5 24.5 G 3.6 G 10.4 G 2.5 G 42.2 G 5.2 G 

1 - 79.3 G - 8.7 G - 17.5 G - 2.7 G 106.7 G 10.1 G 

0.5 253.7 G 18 G 192.9 G 16 G 430.1 G 19 G 

 

Table 5 Ferrofluid magnetization for particle concentration of 4% by vol. 

Separation 

(cm) 

0.5’x0.125’ 

Dual Magnets 

0.5’x0.0625’ 

Dual Magnets 

0.5’x0.0625’ 

Single Magnet 

Measured 

Field of Fluid 

Measured Field 

of Fluid 

Measured 

Field of Fluid 

1.5 1.7 G 1.2 G 2.6 G 

1 - 4.4 G - 1.3 G 5.1 G 

0.5 7.9 G 8 G 9.6 G 
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Table 6 Ferrofluid magnetization for a particle concentration of 2% by vol. 

Separation 

(cm) 

0.5’x0.125’ 

Dual Magnets 

0.5’x0.0625’ 

Dual Magnets 

0.5’x0.0625’ 

Single Magnet 

Measured 

Field of Fluid 

Measured Field 

of Fluid 

Measured Field 

of Fluid 

1.5 0.9 G 0.6 G 1.2 G 

1 - 2.3 G - 0.7 G 2.6 

0.5 4 G 4 G 4.8 G 

 

 

Figure 10 Magnetic flux density for dual magnet configuration of 0.125" by 
0.5' with varying particle concentration. 

 

Additionally, the ferrofluid was pulsed using the syringe pump imitating a 

square wave profile. A volume of 2 ml of the ferrofluid was flown at a maximum 

velocity of 40 ml/min, and then the fluid was paused for ten seconds. No pulsed 
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effect was recorded in the magnetic field induced by the ferrofluid. This may be 

due to the magnetic relaxation of the ferrofluid. If the demagnetization time is too 

fast, then probing for the magnetic field at too great of a separation will not yield 

any effects from the magnetization of blood. In contrast, if the demagnetization 

time is too slow, then probing for the magnetic field too close to the permanent 

magnet will yield a constant magnetization. 

3.6 Discussion 

The permanent magnet characterizations agreed well with the calculated 

values using equation 6. There is an exponential growth in the magnetic field with 

decreased separation distance, with the exception at 1 cm, where a decrease in 

the magnetic field is observed. This trend may be explained by a change in the 

magnetic field lines when getting close to the edge of the permanent magnets. 

While performing the experimental trials with the concentration, there was a 

decrease in the induced magnetic field by the ferrofluid with decreased particle 

concentration. This agrees well with the fundamentals of magnetism; less 

amount of particles suspended in the ferrofluid leads to fewer magnetic moments 

aligning to the field, which creates a lower magnetic field. Lastly, the lack of 

pulsatile nature in the magnetic field when pulsing the ferrofluid may be due to a 

fast magnetization time [71]. The ferrofluid is instantly magnetized, whether it 

flows by the magnet or sits stationary under it, and thus results in a constant 

magnetization regardless of the flow profile of the fluid. Figure 11 shows various 

profiles that may occur depending on the magnetic relaxation of the particles. It is 
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desired to have a magnetization profile as in Figure 11 (A), which indicates the 

demagnetization of the magnetic particles occurs within the distance of the 

permanent magnet. If the magnetization time is very fast, then the solution will 

remain magnetized regardless of the profile of the fluid, and appear as a constant 

magnetization on the magnetic sensor (B). If the demagnetization time is too 

rapid, then the particles will lose magnetization before reaching the magnetic 

sensor (C). 
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Figure 11 Magnetic relaxation profiles.  
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Chapter 4 – Theoretical Model 

To further understand the interactions between magnetic fluids and an 

applied magnetic field, a finite element model using COMSOL Multiphysics 4.0a 

was created [72]. The Navier-Stokes relations were used to solve for the velocity 

profile of the magnetic fluid. Maxwell’s equations, along with Gauss’ and 

Ampere’s Laws were used to determine the magnetic field from the permanent 

magnet and the magnetic fluid. The model described below is a derivation of a 

previously established model by COMSOL to describe the interactions between a 

magnetic fluid and a permanent magnet to use for drug targeting studies. The 

finite element model setup, validation, the simulations performed and the 

observed results are discussed in this chapter.  

4.1 Setup 

The following sections include descriptions of the finite element model, 

including the governing equations used, the specific geometry, and the boundary 

conditions. 

4.1.1 Governing Equations 

The governing equation for the fluid model is the time-dependent Navier-

Stokes equation [73] and, for the magnetostatic model, the Maxwell-Ampere 
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equation [59]. The next sections will briefly introduce these equations and the 

formulation used for the different domains in the finite element model. 

4.1.1.1 Magnetostatics  

• Maxwell-Ampere’s law: 

 
(7) 

• Gauss’ law: 

 
(8) 

• Curl of vector field: 

 
(9) 

• Continuity equations: 

 
(10) 

 
(11) 

 
(12) 

• Magnetic fluid magnetization [74]: 

 
(13) 

 

(14) 
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where, 

• H is the magnetic field in Amps/meter 

• B is the magnetic flux density in Tesla 

• �� is the free permeability of space  

• ��,��� is the relative permeability of the magnet 

• M is the magnetization in Amps/meter 

• Χ is the magnetic susceptibility 

• Az is the vector potential in the z direction in Volts*second/meter 

4.1.1.2 Laminar Flow  

• Navier-Stokes: 

 

(15) 

• Continuity equation: 

 
(16) 

where, 

• ρ is the density in kilogram/meter3 

• u is the velocity in meter/second 

• η is the dynamic viscosity in Pascals*second 

•  P is the pressure in Pascals 

• F is the force on the fluid in Newtons 
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4.1.2 Geometry 

The geometry used in the 2D finite element model is shown in Figure 12. 

The green boundaries encompass the magnetic fluid. The blue boundaries refer 

to the permanent magnet. Sufficient space for dissipation of the magnetic flux 

lines is given by creating a large domain with air surrounding the magnets and 

the fluid. 

 

Figure 12 Finite element model geometry. 

 

It is of interest to investigate the difference between the magnetization of 

the magnetic fluid when using one magnet as done by Phua et al. [1] and when 

using two parallel magnets. The geometry for the single magnet simulations is 

identical to that shown for the dual magnet simulations, with the exception of the 

removal of the bottom permanent magnet. It is assumed that the magnetic field 

between the two parallel magnets will be more uniform, thus having a greater 
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effect with the alignment of the magnetic moments of the magnetic fluid. 

Comparison of the results between the simulations using two parallel magnets 

and a single magnet were performed.  

4.1.3 Boundary Conditions 

Proper boundary conditions are declared to find solutions to the model. 

Descriptions of the boundary conditions are explained below.  

4.1.3.1 Magnetostatics 

• Magnetic Insulation: A = 0; Magnetic potential is equal to zero in the 

normal direction. 

o Boundary condition selected for all boundaries surrounding the 

domain containing air. 

• Continuity: n x (H1 – H2) = 0; Signifies continuity of the tangential 

component of the magnetic field.  

o Boundary condition selected for all boundaries surrounding the 

magnets and the fluid, with exception of the fluid inlet and outlet.  

4.1.3.2 Laminar Flow 

• No Slip: u = 0; Refers to the non-slip condition between the fluid and rigid 

walls.  

o Boundary condition selected for the top and bottom boundary of 

the fluid.  

• Inlet: u = C; Velocity at the inlet is equal to a constant C.  

o Boundary condition selected for the inlet of the fluid.  
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•  Outlet: P = 0; Pressure at outlet is equal to zero, signifies an open 

boundary.  

o Boundary condition selected for the outlet of the fluid.  

4.2 Validation 

To establish the validity of the finite element model, a simulation using the 

dual magnets of 0.5” diameter and 0.125” thickness was performed. The 

magnetic flux density was probed at the horizontal centerlines between the 

magnets (Figure 8), and compared to experimental results.  

4.3 Simulation Trials 

The trials simulated the behavior between a magnetic fluid and an applied 

magnetic field. There are four main domains set-up in the finite element model. 

One corresponds to the air, two to Neodymium Iron Boron permanent magnets 

and one to the magnetic fluid. The material properties used in each of the 

domains are listed below.  

Table 7 Simulation domain properties 

Domains Ρ (kg/m3) µ (Pa.s) Χ σ εr 

Air N/A N/A 1 0 1 

Neodymium Iron Boron 

Magnet 
N/A N/A 1.05 0 1 

Magnetic 

Fluid 

Ferrofluid 1210  0.006  1.56 0 1 

Blood 1050  0.0035  -0.667e-6 0 1 
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A parametric study was performed in the finite element model by varying 

three different properties. The parameters being varied for the fluid are the profile 

of the input velocity along with the input velocity. The magnetostatics domain 

also has parameters that are being varied, which are the strength of the 

permanent magnet or remnant magnetic flux and the magnetic particle mass 

fraction. All parametric simulations will be done using the properties of blood, 

since it is of interest to find out how the change in the various parameters affects 

the creation of a blood flow sensor. The values were varied for the mass fraction 

of the magnetic particles from 0 kg/kg to 1 kg/kg with 0.1 kg/kg intervals. 

Additionally, the applied magnetic field was varied by having permanent magnets 

with remnant magnetic flux starting at 0 T to 2 T at 0.1 T intervals. The model 

was probed for the magnetic flux at various points at the top boundary of the 

fluid. The following sections describe the simulations performed for validation 

purposes of the finite element model along with the fluid profile variations 

implemented in the fluid model. 

4.3.1 Stationary 

The inlet velocity during the stationary trials is equal to a constant number. 

This indicates that the flow profile is uniform, and is constant with time. The inlet 

velocity was varied from 0 m/s to 1 m/s with 0.1 m/s intervals. The range for the 

velocity variations was chosen, since 0.5 m/s is the average velocity value for 

blood flowing in the radial artery.  
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The solver used for this model is the MUMPS direct solver. This solver is a 

fast solving algorithm, which is usually necessary when trying to use cluster 

computation. 

4.3.2 Transient – Pulsatile Flow 

The input velocity for the time dependent model is a function of time and it 

has a sinusoidal profile. This profile represents the pulsatile motion experienced 

by the blood from the pumping of the heart. Equation 18 was used as the inlet 

boundary condition [72]. 

 
(17) 

where, U0 is the input velocity magnitude, ω is the frequency in radians and t is 

the time in seconds. The addition of the squared square root sinusoidal wave 

term eliminates negative values, and thus better represents the motion created 

by the pumping of the heart.  

 During the time dependent model, the input velocity U0, the mass fraction, 

the relative permeability and the strength of the permanent magnets are varied 

as described in section 4.3 and 4.3.1.  

This model initially solves a parametric problem, by slowly increasing the 

input velocity U0 from 0 m/s to 0.5 m/s. It then solves the laminar flow model, by 

using the BDF solver with two degrees for the time dependency and the 

PARADISO solver for the nonlinearities associated with the problem. The 

PARADISO solver is a fast solver, appropriate for multi-core capabilities. 

Following the laminar flow solution, the model uses these solutions as initial 
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values for the velocity and pressure, and simultaneously solves for the magnetic 

field and the new velocities and pressure when magnetic interactions are taken 

into consideration. During this last step, the solver used for the time dependency 

is the generalized alpha with global tolerances of 0.0000000001 and the MUMPS 

solver for the nonlinearities in the model.   

4.4 Results 

The following section describes the results encountered in the finite 

element model for the simulations using a dual magnet configuration and a single 

magnet. The parametric variations described in the previous section were 

implemented, and the corresponding trends were observed. Comparison of the 

parallel magnet configuration and of a single magnet was only done for the 

profile of the magnetic flux density with varying distance in the magnetostatics, 

section 3.3.1. The general correlations for the remainder of the parametric 

sweeps were similar and results were only included for the dual parallel magnet 

configuration. 

4.4.1 Validation 

The results from the validation simulation are seen in Figure 13. The 

general profile of the results given by the finite element model and the 

experimental results are similar. This indicates that the finite element model must 

be properly set-up and. The greatest deviations in the results are seen when the 

magnetic field lines change in direction at a distance of 2 cm. These differences 
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may be due to a magnetic field value not measured exactly at 2 cm, but a small 

deviation from 2 cm in the experimental trials.  

 

Figure 13 Comparison between experimental and simulation values of the 
magnetic flux density with varying distance. 
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double magnet. A surface plot of the magnetic flux density streamlines is shown 
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m from the center, when looking at the field on the top boundary of the capillary 

glass.  

 

Figure 14 Single magnet magnetic flux density surface plot. Surface 
indicates the magnetic flux density norm (G), and the contour lines the 

magnetic vector potential (Wb/m). 

 

 

Figure 15 Magnetic flux distance variation with distance for a single magnet 
along the top boundary of the glass capillary. 
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 Magnetic flux density was tracked along the top boundary of the capillary 

tube, to identify the effect of the separation distance from the permanent magnet. 

It is observed in Figure 15 that the maximum magnetic flux density reaches a 

value of 722.1 G at the center of the magnet. A uniform decay is observed in the 

magnetic field as the distance from the permanent magnet is increased. The 

magnetization of blood was seen to follow the same shape of the magnetic field 

(Figure 16), but with an opposite direction. The opposite shape of the magnetic 

flux density contribution from blood represents the behavior of oxygenated blood, 

which is diamagnetic in nature. This means its magnetic moments align in the 

opposite direction of the applied field, and subtracts from the overall magnetic 

flux density. The small dips seen approximately ±.01 m around the center of the 

signal are due to the change in the direction of the magnetic field and enhanced 

in the magnetization of blood. This dip is not evident in Figure 15 due to the small 

nature of the change in the magnetic field, and the large scale of the values 

plotted. 

 

Figure 16 Magnetic flux contribution from blood with a single magnet. 
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4.4.2.2 Double Magnet 

The surface plot created in COMSOL, (Figure 17) aids in visualizing the 

magnetic fields radiated by the permanent magnets and the magnetization of 

blood. In the surface plot, the magnetic flux density magnitude is shown as 

varying colors throughout the finite element model, accompanied by the field 

streamlines. It is noted that a very uniform field is created between the two 

parallel magnets at their center points. The highest magnetic flux density was 

observed at the magnet’s edges with a value of 7774 G. The lowest magnetic 

flux was seen at the edges of the main domain, with a value of 1.327x10-6 G. Two 

symmetrical spots along the centerline between both permanent magnets were 

also identified as a low magnitude field in the middle of a high field, with values of 

approximately 100G. 

 

Figure 17 Surface plot of the magnetic flux density in the dual magnet 
configuration. Surface indicates the magnetic flux density norm (G), and 

the contour lines the magnetic vector potential (Wb/m). 
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 Figure 18 shows a plot of the magnetic flux density with varying distance 

from the permanent magnet. The maximum magnetic flux density value is 

observed at the center of the magnet with a value of 1211 G. This value is twice 

the maximum magnetic flux density observed with a single magnet. A rapid 

decay in the magnetic flux is observed from the center of the permanent 

magnets. A dip in the magnetic flux is seen at a distance of 1 cm away from the 

center of the permanent magnet; this drop corresponds to the spots of low 

magnetic flux density seen in the surface plot. This is due to a change in the 

magnetic field lines, which corresponds to the changes from the highly uniform 

field seen between the magnets and the curved field surrounding the magnets.  

 

Figure 18 Magnetic flux distance variation with distance for dual magnets 
along the top boundary of the glass capillary. 
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permanent magnets, where the highest field concentration occurred. The overall 

behavior of the magnetic flux density contribution from the blood with respect to 

distance was similar to that of the permanent magnets, but with opposing 

direction.  

 

Figure 19 Magnetic flux contribution from blood with a dual magnet. 
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the conducting medium which is air. The y intercept of the equation is -7e
-14, 

which can be approximated as zero. 

 

Figure 20 Magnetic field variations against the magnetic flux density. 
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Figure 21 Parametric sweep of remnant magnetic flux densities. 

 

 

Figure 22 Blood induced magnetic flux density with a remnant magnetic 
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A parametric study was also performed with the mass fraction of blood. An 

increase in mass fraction resulted in an increase in the magnitude of the 

magnetic flux density induced by blood in the opposite direction. The values 

ranged from 0 G at a mass fraction of 0 kg/kg to 0.00012 G with a mass fraction 

of 1 kg/kg. These results are in agreement with the experimental results seen 

with varying concentration, where a decrease in concentration resulted in a 

decrease in the magnetic field induced by the magnetic solution. The lower 

particles in the solution to be magnetized result in a lower magnetic field 

contribution due to the lower magnetic moments formed in the solution.  

 

Figure 23 Blood contribution of magnetic flux density with varying mass 
fraction. 
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development of the fluid is seen at the inlet, with a boundary layer at the walls 

and the maximum velocity through the centerline of the capillary. The maximum 

velocity is 0.753 m/s, due to the development of the fluid. The parabolic nature of 

the Poiseuille flow can be seen by the arrow plot shown at the outlet of the 

capillary in Figure 25. A parametric study was run, to determine the maximum 

flow velocity at various input velocities. The results of the maximum flow 

velocities are shown in Figure 26, where the input velocity was varied from 0 m/s 

to 0.5 m/s with a step of 0.1 m/s.  

 

Figure 24 Surface plot of constant velocity in capillary glass with an input 
velocity of .5 m/s. 
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Figure 25 Poiseuille flow representation by an arrow plot, observed at the 

 

Figure 26 Constant velocity para
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seuille flow representation by an arrow plot, observed at the 
outlet of the capillary tube. 

Constant velocity parametric sweep.  Values vary 
m/s with 0.1 m/s intervals. 
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can be seen in Figure 27. It is observed that the maximum velocity achieved 

during pulsatile flow is similar to that seen with a constant velocity. 

 

Figure 27 Pulsatile flow parametric sweep. 
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magnetization equation is applied to the whole fluid, without consideration of 

single particle magnetizations.  

 

Figure 28 Induced magnetic flux density from blood at a distance of 5mm 
away from the magnet. 
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in blood and thus there was a greater contribution to the magnetic field from the 

blood. During the concentration parametric sweeps, an increase in concentration 

created an increase in the magnetic field contributed from blood. This agrees well 

with the fundamentals of magnetism, where greater particle concentration means 

a greater net magnetic moment alignment from the solution. Small variations of 

the magnetic field were seen during the mass fraction parametric sweep. This 

indicates that a sensor to detect blood flow using the magnetization of blood will 

be less sensitive to iron concentration fluctuations in the blood, due to anemia or 

other biological conditions. 

 The results when coupling the laminar flow and the magnetostatics did 

not yield any correlations between the flow velocity and the contribution to the 

magnetic field from the blood. Even when pulsing the fluid flow, the 

magnetization of the blood remained constant. It is presumed this is due from not 

incorporating a time dependency on the magnetization of the blood. The time 

dependency would account for the time it takes a particle to magnetize and 

demagnetize. This is represented by  

 

(19), 

where M is the magnetization perturbation from the equilibrium magnetization M0 

(represented by equation 13 & 14), and � is the relaxation time constant. The 

relaxation time constant is defined as 
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(20), 

where n f is the viscosity of the fluid, Vh is the volume occupied by the magnetic 

particles, m is the magnetic moment of the magnetic particles and H is the 

applied magnetic field. For blood, the typical relaxation time constant is in the 

order of seconds [67]. 

Equation 19 may represent an important factor in order to see a varying 

disturbance in the magnetic field; it is thought that by using a magnetization 

equation which is not time-dependent, it is assumed that the fluid has achieved 

an equilibrium magnetization, and will remain constant. Carefully examining 

equations 13 & 14, which was used in the simulations, it is noted that the 

resultant calculated magnetization value is only dependent in space. Thus, with a 

defined fluid magnetic susceptibility and a vector potential that varies in space, a 

magnetization is calculated at a given point. The calculated magnetization for the 

fluid domain will be the same at a specific coordinate, regardless of time and 

velocity variations. It is probable that equations 13 & 14 do not incorporate 

particle velocity variations, but simply considers the entire fluid as a whole 

substance. In contrast, equation 19 incorporates the effect of magnetizing a 

single particle, the time it takes for it to magnetize and demagnetize and 

accounts for the influence in the velocity field on the single fluid particle. The 

nature of the phenomenon seen by Phua et al. [1] is described in detail by Axel 

when explaining the fundamentals of blood flow effects in magnetic resonance 

imaging. Suryan et al. observed that a magnetic fluid that flowed through a coil 



www.manaraa.com

 

61 

initially had an increased signal and it decreased with the increase of velocity 

[75]. During slow flow “the new spins were strongly magnetized and gave a 

strong signal, whereas with rapid flow, the upstream fluid was less completely 

magnetized due to less time spent in the magnet and gave a weaker signal” [76]. 

This effect is only seen if the saturation magnetization of the fluid has not been 

achieved with the applied magnetic field. If a paramagnetic fluid with Poiseuille 

flow is considered, flowing through a tube as shown in Figure 29, the 

magnetization effect with respect to time seen during  the solution’s flow is 

represented by a nonlinear decay as seen in Figure 30. The time it takes to reach 

no magnetization change is represented by the length of the magnetized fluid 

over the mean velocity of the fluid.  

 

Figure 29 Magnetized particle movement representation of length L in a 
tube with mean velocity V and Poiseuille flow [76]. 
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Figure 30 Magnetization distribution with time for particles in Poiseuille 
flow [76]. 

 

In the case of blood particles with pulsatile flow, the magnetization of the 

fluid will yield a dip in the net magnetic field of the permanent magnet. The 

distribution of the magnetization of blood with respect to the distance traveled in 

one heartbeat, with an input velocity of 0.5 m/s, may be represented with Figure 

31. The largest magnitude in magnetization is achieved when the flow dwells 

underneath the magnet. The effects of magnetization and demagnetization can 

be represented by the time dependent magnetization decay curve. Thus, blood 

magnetization is seen as increasing dips in the magnetic field while approaching 

the permanent magnet and demagnetization as decreasing dips while flowing 

away from the magnet.  
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Figure 31 Magnetization of blood during one heartbeat. 
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Chapter 5 – Conclusion and Future Work 

The objective of this thesis was to acquire in-depth understanding of the 

phenomenon encountered by Phua et al. [1]. It was not possible to replicate this 

study neither experimentally nor analytically. During experimentation, it was 

difficult to acquire a commercially available sensor that could measure the 

magnetic disturbances created by the pulsatile motion of the blood. Moreover, 

blood’s sensitivity was found to be in the order of 10-5, which meant that in order 

to acquire this signal, custom magnetic shielding and amplification circuitry 

needed to be implemented. Furthermore, the magnetic interference of electronics 

generated by equipment in laboratories creates a lot of noise in the signal.  

An analytical model using COMSOL Multiphysics with the equations 

simulating the behavior of blood in an applied magnetic field was also created. 

Despite various simulations and attempts in changing the geometry, magnetic 

properties, addition of electrical properties and using fine meshes and high 

tolerances, the fluctuations in the magnetic field due to blood’s pulsatile motion 

were not seen. The magnetization equation used in the model, was only 

dependent on space, lacking the variations seen during the time dependent 

pulsatile motion of blood. On further investigation, a time dependent 

magnetization equation was found. This is thought to be the missing link in the 

finite element model which accounts for particle magnetization relaxation, and 
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the velocities of the fluid, and will allow for the visualization of the fluctuations in 

the magnetic field due to blood. 

 At this point it is beneficial to understand the physical behavior behind 

disturbances in the magnetic field created by the pulsatile motion of blood. The 

most important factor which could be attributed to this phenomenon is the 

exposure time. Blood which dwells under the permanent magnet for a longer 

time, gets magnetized to a higher degree, and exhibits a greater magnetic 

moment alignment. During fast flow, the blood is exposed to the magnetic field 

for less time and thus has a much smaller magnetization. Therefore, one would 

expect a valley to occur during the lower duration diastolic phase and minimal 

magnetization during the longer systolic phase. This theory has been previously 

formulated in studies to acquire blood flow during magnetic resonance imaging, 

and experimentally proven [75]. A secondary effect, also as important in the 

successful acquisition of the disturbance signal, is the relaxation time. If the 

relaxation of a magnetic solution is too fast, than the magnetic solution will lose 

its magnetization before it reaches the magnetic sensor and no magnetic 

disturbance will be measured. Moreover, if the magnetic solution is instantly 

magnetized, the magnetic fluid will appear to always be evenly magnetized 

regardless of the pulsed nature of the flow. Blood has a magnetic relaxation in 

the order of a second, which is important in the successful acquisition of the 

disturbance signal when the frequency of the pulsing fluid is 1 Hz. 

This thesis has demonstrated that the use of a magnetic sensor to non-

invasively measure blood flow is technically challenging due to the following: 
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• The magnitude of blood’s contribution to a magnetic field of 1200G is in 

the order of ~10-5 G, which is much smaller than earth’s magnetic field 

(~.3 G) and the magnetic signatures of many electronics in the 

environment.  

•  Blood’s magnetic field contribution can be increased by using larger 

applied fields; this is limited by the magnetic sensor and its ability to 

maintain the sensitivity needed during larger measurement ranges. 

• Magnetic solutions with higher magnetic susceptibilities cannot be used, 

since their magnetic properties, such as the magnetization relaxation, 

does not match that of blood.  

Future work for this project includes the creation or acquisition of a 

magnetic sensor with high sensitivities, in order to measure the magnetic 

disturbances created by blood. If this is accomplished, it is desired to use blood 

in further in vitro experimentation, and perhaps determine the effect of static and 

alternating magnetic fields of varying magnitudes. In the finite element model, it 

is desired to implement the time dependent magnetization, which should lead to 

the successful replication of the MMSB phenomenon. Furthermore, it is desired 

to assess the applied field created by varying permanent magnet geometries and 

configurations, such as solenoids, shifted dual magnets and large single 

magnets. 
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